Project 4

The Date Class

Introduction

To facilitate calculations with dates, such as printing a calendar, we would like to create a
Date class. A Date object will have three data members: the month, the day, and the year.
The day and the year will be stored at ints. For the month, we will create an enumerated
type called Month with the values Jan, Feb, Mar, ..., Dec. The smallest value allowed for the
year is 1601, which was soon after the Gregorian calendar was established.

The enumerated type Month will be used internally only. Externally, the user will work
with the strings "Jan", "Feb", "Mar", etc. If you print an enumerated value, all you get is
the numerical value, which we don’t want.

See the file The Date Class.pdf for details. All of the member and non-member func-
tions are described there. The following is a more detailed description of some of the func-
tions.

Constructors

Any constructor that receives values for the month or the day or the year should invoke
the corresponding mutator, because each of those values must be validated. The mutators
should all include validity checking.

Mutators

The mutators should verify as much as possible that the specified value is valid. The year
must be at least 1601. The month must be one of the strings "Jan", "Feb", "Mar", ...,
"Dec". The day must be at least 1 and at most 31. Certainly any day between 1 and 28
is valid, regardless of the month, but the values 29, 30, and 31 may or may not be valid,
depending on the month and the year. Nevertheless, the day mutator should accept any
value from 1 to 31.

In this project we will follow a different style regarding the names of the inspectors and the
mutators. For example, it is cumbersome to write getMonth() and setMonth() each time.

1



Because of overloading and because these functions represent somewhat similar purposes, we
may give them both the same, simpler name month, provided they have different signatures.
Thus, the prototypes of the three inspectors and the three mutators will be

Month month() const;
int day() const;
int year() connst;

void month(string m);
void day(int d);
void year(int y);

Facilitators

The function add () will return the date that is a specified number of days before or after the
invoking date. If the parameter is positive, the date will be in the future; if the parameter
is negative, it will be a date in the past. This will facilitate the operators + and -, defined
for a Date as the left operand and an int as the right operand.

The functions isEqual () and isBefore() will compare the invoking date to the specified
date (the parameter). These functions will facilitate the comparison operators ==, =, < >
<=, and >=.

The input () and output () functions will be used to facilitate the insertion and extrac-
tion operators << and >>.

Other public member functions

The function weekday() will return the day of the week of the invoking date as a string,
suitable for printing. For example, if the invoking date is a Monday, it will return the string
"Monday".

The function current () will return the current (real time) date.

The function validate() will check whether the invoking date is valid. For example,
Nov 31, 2018 is not a valid date.

Operators

The addition and subtraction operators will add an integer to a date or subtract an integer
from a date, producing the date which is that many days in the future or the past from the
given date.

Another subtraction operator will subtract one date from another and return the number
of days between two dates. If the second date comes after the first date, then the number of
days will be negative. Note that we are overloading the subtraction operator. That is,



Date — int = Date,

Date — Date = int.

The incrementing and decrementing operators (pre- and post-) will add or subtract one
day from the date. These operators are member functions.

The six comparison operators will compare two dates according to their chronological
order.

The input operator will read a date entered by the user. The month must be the standard
three-letter abbreviation, with no period, beginning with a capital letter and followed by
two lowercase letters. Then the day and the year are entered, separated by a comma. For
example, the user may type Nov 9, 2018. If the user mistypes the date, it will not be read
properly. The output operator will display the date in the same format.

Private member functions

There are several private member functions, meant to be used only by other member func-
tions.

The function operator int() will convert the invoking date into an integer representing
the number of days since Jan 1, 1601, where Jan 1, 1601 is day number 0. This “opera-
tor” functions very much like an int-class constructor, constructing an int from a Date.
Although it is a member function, it is invoked differently. To convert the Date object
someday to an integer, type int (someday), which is the constructor syntax.

The constructor Date (int) will construct a date from an integer (the reverse of operator
int ()), where the integer represents the number of days since January 1, 1601. For example,
Date(0) would construct the date Jan 1, 1601.

The constructor Date(Month, int, int) will construct a Date from an enumerated
value of Month (not a string), and two ints, representing the day and the year. Because
the enumerated type Month is used only internally, this constructor cannot be called from
outside of the class scope, i.e., from outside of any member function.

The function isLeapYear () will determine whether the specified year is a leap year. A
year which is a multiple of 4 is a leap year unless it is a century year which is not a multiple
of 400.

The function daysInMonth() will return the number of days in the specified month and
year.

Static Member Functions

A member function may be declared to be static by including the keyword static in its
prototype. The Date class has three static member functions:

e static Date current();



e static bool isLeapYear(int y);
e static int daysInMonth(Month m, int y);

When a function is static, it does not have any reference to its invoking object. Indeed,
there may not be an invoking object. When these functions are invoked within class scope,
they are invoked in the usual manner. However, when they are invoked from outside class
scope, they may be invoked either by a Date object or without a Date object. For example,
if someday is a Date object, then the current () function may be invoked as

someday . current ()
or simply as
Date: :current ()

Either way, it returns the current date, in real time, regardless of the value of the variable
someday.

Your Assignment

Your assignment is to implement the functions in date.cpp that have not already been
implemented. Then test your implementations by running the program DateTest.cpp. By
checking the output of DateTest.cpp carefully, you should be able to determine whether
the Date class is working properly.

Place the files date.h and date.cpp in a folder named Project 4 and drag it to the
dropbox. Your work is due by midnight, Thursday, November 14, 2019.



